University of Imam Muhammad

College of Science H.W

General Physics 101 (1435-1436)

Student Name	Student ID	Section				

question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
answer															

1- A car travels 40 kilometers at an average speed of 80km/h and then travels 40 kilometers at an average speed of 40km/h. The average speed of the car for this 80-km trip is:

- a. 40km/h
- b. 45km/h
- c. 48km/h
- d. 53km/h

2- The coordinate of a particle in meters is given by $x(t) = 16t - 3.0t^3$, where the time t is in seconds. The particle is momentarily at rest at t =

- a. 0.75 s
- b. 1.3 s
- c. 5.3 s
- d. 7.3 s

3- Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by

particle 1: $x(t) = 3.5 - 2.7t^3$ particle 2: $x(t) = 3.5 + 2.7t^3$ particle 3: $x(t) = 3.5 + 2.7t^2$ particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$

Which of these particles have constant acceleration?

- a. All four
- b. Only 1 and 2
- c. Only 2 and 3
- d. Only 3 and 4

4- Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by

particle 1: $x(t) = 3.5 - 2.7t^3$ particle 2: $x(t) = 3.5 + 2.7t^3$ particle 3: $x(t) = 3.5 + 2.7t^2$ particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$

Which of these particles is speeding up for t > 0?

a. All four

b. Only 1

- c. Only 2 and 3
- d. Only 2, 3, and 4

5- The coordinate of an object is given as a function of time by $x = 7t - 3t^2$, where x is in meters and t is in seconds. Its average velocity over the interval from t = 0 to t = 4 s is:

a. 5m/s

b. -5m/s

c. 11m/s

d. -11m/s

6- The coordinate of an object is given as a function of time by $x = 4t^2 - 3t^3$, where x is in meters and t is in seconds. Its average acceleration over the interval from t = 0 to t = 2 s is:

a. $-4m/s^2$

b. $4m/s^2$

c. -10m/s^2

d. 10m/s^2

7- The position y of a particle thrown up along the y axis depends on the time t according to the equation $y = at - bt^2$. If its velocity 4.2 m/s at t=1s, the magnitude of the constant a and b are respectively :

a. a = 14, b = 4.9b. a = 5.2, b = 15c. a = 5.6, b = 9.8d. a = 9.8, b = 6.8

8- At time t = 0 a car has a velocity of 16 m/s. It slows down with a de-acceleration given by 0.50t , in m/s^2 for t in seconds. It stops at t =

a. 64 sb. 32 s

c. 5.7 s

d. 8.0 s

9- Starting at time t = 0, an object moves along a straight line. Its coordinate in meters is given by $x(t) = 75t - 1.0t^3$, where t is in seconds. When it momentarily stops its acceleration is:

a. 0

- b. -73 m/s^2
- c. -30 m/s^2
- d. -9.8 m/s^2

10- A baseball is thrown vertically into the air. The acceleration of the ball at its highest point is:

- a. Zero
- b. g, down
- c. g, up
- d. 2g, down

11- Which one of the following statements is correct for an object released from rest?

- a. The average velocity during the first second of time is 4.9m/s
- b. During each second the object falls 9.8m
- c. The acceleration changes by 9.8m/s^2 every second
- d. The object falls 9.8m during the first second of time

12- An object is thrown straight up from ground level with a speed of 50 m/s. If $g = 10 \text{ m/s}^2$ its distance above ground level 1.0 s later is:

- a. 40 m
- b. 45 m
- c. 50 m
- d. 55 m

13- An object is thrown straight up from ground level with a speed of 50 m/s. If $g = 10 \text{ m/s}^2$ its distance above ground level at a maximum height is:

- a. 125 m
- b. 270 m
- c. 330 m
- d. 480 m

14- How far does an object fall during the second second of its fall?

- a. 4.9m
- b. 9.8m
- c. 15m
- d. 19.6m

15- An object dropped from the window of a tall building hits the ground in 12.0 s. If its acceleration is 9.80 m/s^2 , the height of the window above the ground is:

- a. 29.4 m
- b. 58.8 m
- c. 118 m
- d. 705.6 m

Solution

Best wishes

T. Merfat Al-Zumia